北京时间2022年11月3日9时32分,中国空间站梦天实验舱顺利完成转位。
转位期间,梦天实验舱先完成相关状态设置,再与空间站组合体分离,之后采用平面转位方式经约一小时完成转位,与天和核心舱节点舱侧向端口再次对接。今天下午,神舟十四号航天员乘组将进入梦天实验舱。
梦天实验舱转位完成标志着中国空间站“T”字基本构型在轨组装完成,向着建成空间站的目标迈出了关键一步。按计划,后续将开展空间站组合体基本功能测试和评估。
一个多月前,问天实验舱完成了我国首次利用转位机构在轨实施大体量舱段转位操作,此次梦天实验舱转位过程与之很相似。通过两次转位,空间站组合体实现了“T”字基本构型:以天和核心舱为对称,问天实验舱与梦天实验舱分布于天和核心舱节点舱的两个侧向停泊口。
关于问天实验舱和梦天实验舱的两次转位,或许你还有不少疑问,来听听专家怎么说吧。
为什么要转位?
转位动作在我国空间站的建造及后续任务实施中发挥了重要作用。“问天”“梦天”两个实验舱在发射后,首先与天和核心舱进行前向交会对接,再通过转位动作从天和核心舱前向对接口移动到侧向停泊口,从而完成空间站“T”字基本构型的建造任务。
为什么不让实验舱通过侧向交会对接,直接对接到天和核心舱两侧?
有两方面原因:
一是实验舱与空间站组合体进行侧向对接,会因为质心偏差对空间站姿态造成较大影响,甚至可能会有滚转失控的风险;
二是根据空间站建造方案,两个实验舱将在天和核心舱的侧向永久停泊,如果选择侧向交会对接,首先需要在天和核心舱两个侧向端口分别配置一套交会对接设备,并且这两套设备只能使用一次,造成资源的浪费。
因此,两个实验舱先与核心舱进行前向交会对接,再通过转位移至核心舱侧向停泊口,这是最优的方案设计。
不过,两个实验舱在转位任务安排上有些差异。问天实验舱在经过发射和交会对接后,开展了航天员出舱等一系列任务,而后开展转位。与问天实验舱不同,梦天实验舱在发射、交会对接后直接转位,待形成“T”字构型组合体后,再开展在轨测试、航天员驻留等任务。
梦天实验舱转位任务的顺利实施,离不开各系统的高效配合。测控与通信分系统在天地间搭建起畅通的通信链路,传输高清图像,让整个转位过程100%受控;机械臂分系统始终作为转位机构的备份手段,保障平台安全;热控分系统负责空间站组合体的温度控制,包括向太空辐射散热与热管理;空间站机GNC(制导、导航与控制)分系统始终精准控制,确保组合体以最高稳定度进入停控状态;数管分系统发挥“智能大脑”作用,完成对一系列复杂指令的零差错处置。
为什么是“T”字构型?
2022年7月,问天实验舱发射并与天和核心舱完成交会对接,空间站组合体呈两舱“一”字构型。9月底,问天实验舱转位成功,空间站组合体变为两舱“L”字构型。梦天实验舱刚与天和核心舱完成前向交会对接时,空间站组合体呈横向且不对称的“T”字,直到梦天实验舱完成转位,三舱最终呈现现在的“T”字构型。
为什么是“T”字?
要想使航天器易于运动控制,构型要保证主结构和质量分布尽量对称、紧凑,以获得好的质量特性。
转位后的“T”字构型结构对称,从姿态控制、组合体管理上都比较稳定,易于组合体的飞行。由于其受到的地心引力、大气扰动等影响较为均衡,空间站姿态控制消耗的推进剂和其他资源较少。
反之,若采用非对称构型,组合体的力矩、质心与所受到的干扰相对于姿态控制、轨道来说都不是对称的,其飞行效率更低,控制模式更加复杂,一旦构型发生偏转,就需要付出额外的代价和资源将其控回。
在中国空间站上,问天实验舱、梦天实验舱形成“T”字的一横,两对大型太阳翼置于一横两端,不管空间站以何种姿势飞行,它们都能照上太阳,从而高效发电;两个气闸舱也位于两端,正常工作泄压或异常隔离时,均不影响其他密封舱段构成连贯空间,从而进一步保证了空间站运行的安全性。
当前的空间站组合体示意图